你的位置:首頁 > 電源管理 > 正文

用集成驅(qū)動器優(yōu)化氮化鎵性能

發(fā)布時間:2021-01-14 來源:Paul Brohlin 責任編輯:wenwei

【導讀】氮化鎵 (GaN) 晶體管的開關速度比硅MOSFET快很多,從而有可能實現(xiàn)更低的開關損耗。然而,當壓擺率很高時,特定的封裝類型會限制GaN FET的開關性能。將GaN FET與驅(qū)動器集成在一個封裝內(nèi)可以減少寄生電感,并且優(yōu)化開關性能。集成驅(qū)動器還可以實現(xiàn)保護功能。
 
簡介
 
氮化鎵 (GaN) 晶體管的開關性能要優(yōu)于硅MOSFET,因為在同等導通電阻的情況下,氮化鎵 (GaN) 晶體管的終端電容較低,并避免了體二極管所導致的反向恢復損耗。正是由于這些特性,GaN FET可以實現(xiàn)更高的開關頻率,從而在保持合理開關損耗的同時,提升功率密度和瞬態(tài)性能。
 
傳統(tǒng)上,GaN器件被封裝為分立式器件,并由單獨的驅(qū)動器驅(qū)動,這是因為GaN器件和驅(qū)動器基于不同的處理技術,并且可能來自不同的廠商。每個封裝將會有引入寄生電感的焊線和引線,如圖1a所示。當以每納秒數(shù)十到幾百伏電壓的高壓擺率進行切換時,這些寄生電感會導致開關損耗、振鈴和可靠性問題。
 
將GaN晶體管與其驅(qū)動器集成在一起(圖1b)可以消除共源電感,并且極大降低驅(qū)動器輸出與GaN柵極之間的電感,以及驅(qū)動器接地中的電感。在這篇文章中,我們將研究由封裝寄生效應所引發(fā)的問題和限制。在一個集成封裝內(nèi)對這些寄生效應進行優(yōu)化可以減少該問題,并且以高于100V/ns的高壓擺率實現(xiàn)出色的開關性能。
 
用集成驅(qū)動器優(yōu)化氮化鎵性能
圖1. 由獨立封裝內(nèi)的驅(qū)動器驅(qū)動的GaN器件 (a);一個集成GaN/驅(qū)動器封裝 (b)。
 
用集成驅(qū)動器優(yōu)化氮化鎵性能
圖2. 用于仿真的半橋電路的簡化圖
 
仿真設置
 
為了仿真寄生電感效應,我們使用了一個采用直接驅(qū)動配置的空乏型GaN半橋功率級(圖2)。我們將半橋設置為一個降壓轉(zhuǎn)換器,總線電壓480V,死區(qū)時間50ns時50%占空比(輸出電壓 [VOUT] = 240V),以及一個8A的電感器電流。這個GaN柵極在開關電壓電平間被直接驅(qū)動。一個阻性驅(qū)動設定GaN器件的接通壓擺率。一個電流源只會仿真一個與連續(xù)傳導模式降壓轉(zhuǎn)換器內(nèi)開關 (SW) 節(jié)點所連接的電感負載。
 
共源電感
 
高速開關中最重要的一個寄生要素是共源電感(圖1a中的Lcs),它限制了器件汲取電流的壓擺率。在傳統(tǒng)的TO-220封裝中,GaN源由焊線流至引線,而汲取電流與柵極電流都從這里流過。這個共源電感在汲取電流改變時調(diào)制柵源電壓。共源電感會高于10nH(其中包括焊線和封裝引線),從而限制了壓擺率 (di/dt),并增加開關損耗。
 
借助圖1b中所示的集成式封裝,驅(qū)動器接地直接焊接至GaN裸片的源焊墊。這個Kelvin源連接最大限度地縮短了電源環(huán)路與柵極環(huán)路共用的共源電感路徑,從而使得器件能夠以高很多的電流壓擺率來開關??梢詫⒁粋€Kelvin源引腳添加到一個分立式封裝內(nèi);然而,這個額外的引腳會使其成為一個不標準的電源封裝。Kelvin源引腳還必須從印刷電路板 (PCB) 引回至驅(qū)動器封裝,從而增加了柵極環(huán)路電感。
 
用集成驅(qū)動器優(yōu)化氮化鎵性能
圖3.不同共源電感情況下的高管接通:紅色 = 0nH,綠色 = 1nH,藍色 = 5nH。E_HS是高管器件的VDS和IDS在運行時間內(nèi)的積分值(能耗)。
 
圖3顯示的是高管開關接通時的硬開關波形。在共源電感為5nH時,由于源降級效應,壓擺率減半。一個更低的壓擺率會帶來更長的轉(zhuǎn)換時間,導致更高的交叉?zhèn)鲗p耗,如能耗曲線圖中所示。在共源電感為5nH時,能量損耗從53μJ增加至85μJ,增加了60%。假定開關頻率為100kHz,功率損耗則會從從5.3W增加至8.5W。
 
柵極環(huán)路電感
 
柵極環(huán)路電感包括柵極電感和驅(qū)動器接地電感。柵極電感是驅(qū)動器輸出與GaN柵極之間的電感。在使用獨立封裝時,柵極電感包括驅(qū)動器輸出焊線 (Ldrv_out)、GaN柵極焊線 (Lg_gan) 和PCB跡線 (Lg_pcb),如圖1a中所示。
 
基于不同的封裝尺寸,柵極電感會從緊湊型表面貼裝封裝(例如,四方扁平無引線封裝)的幾納亨到有引線功率封裝(例如TO-220)的10nH以上。如果驅(qū)動器與GaN FET集成在同一個引線框架內(nèi)(圖1b),GaN柵極直接焊接到驅(qū)動器輸出上,這樣可以將柵極電感減少至1nH以下。封裝集成還可以極大地降低驅(qū)動器接地電感(從圖1a中的Ldrv_gnd + Ls_pcb到圖1b中的Lks)。
 
降低柵極環(huán)路電感對于開關性能有著巨大影響,特別是在關閉期間,GaN柵極被一個電阻器下拉。這個電阻器的電阻值需要足夠低,這樣的話,器件才不會在開關期間由于漏極被拉高而又重新接通。這個電阻器與GaN器件的柵源電容和柵極環(huán)路電感組成了一個電感器-電阻器-電容器 (L-R-C) 槽路。方程式1中的Q品質(zhì)因數(shù)表示為:
 
用集成驅(qū)動器優(yōu)化氮化鎵性能
 
在柵極環(huán)路電感值更大時,Q品質(zhì)因數(shù)增加,振鈴變得更高。這個效應用一個1Ω下拉電阻關閉低管GaN FET進行仿真,圖4中這個效應的出現(xiàn)時間為9.97μs,其中柵極環(huán)路電感變化范圍介于2nH到10nH之間。在10nH的情況下,低管VGS在負柵極偏置以下產(chǎn)生12V振鈴。這就極大地增加了GaN晶體管柵極的應力。需要注意的一點是,任何FET的柵極上的過應力都會對可靠性產(chǎn)生負面影響。
 
柵極環(huán)路電感還會對關斷保持能力產(chǎn)生巨大影響。當?shù)凸芷骷臇艠O保持在關閉電壓時,并且高管器件接通,低管漏極電容將一個大電流傳送到柵極的保持環(huán)路中。這電流通過柵極環(huán)路電感將柵極推上去。圖4在大約10.02µs時的曲線變化便是說明了這一點。隨著電感增加,低管VGS被推得更高,從而增加了直通電流,這一點在高管漏電流曲線圖中可見 (ID_HS)。這個直通電流使得交叉?zhèn)鲗芰繐p耗 (E_HS) 從53µJ增加至67µJ。
 
用集成驅(qū)動器優(yōu)化氮化鎵性能
圖4. 不同柵極環(huán)路電感下的低管關閉和高管接通波形:紅色 = 2nH,綠色 = 4nH,藍色 = 10nH。E_HS是高管能耗。
 
根據(jù)方程式 (1),減輕柵極應力的一個方法就是增加下拉電阻值,反過來減少L-R-C槽路的Q品質(zhì)因數(shù)。圖5顯示的是用一個10nH柵極環(huán)路電感和在1Ω到3Ω之間變化的下拉電阻 (Rpd) 進行的仿真結果。雖然柵極下沖被一個3Ω下拉電阻限制在負偏置電壓以下的數(shù)伏特內(nèi),但是關斷保持能力惡化,從而導致更大的直通電流。這一點在漏電流曲線圖中很明顯。
 
E_HS能量曲線圖顯示出,在每個開關周期內(nèi)有額外的13µJ損耗,與2nH的柵極環(huán)路電感和1Ω下拉電阻時53µJ相比,差不多增加了60%(圖4)。
 
假定開關頻率為100kHz,高管器件上的功率損耗從5.3W增加至8W,其原因是由高柵極環(huán)路電感和高下拉電阻值所導致的直通。這個額外的功率損耗會使得功率器件內(nèi)的散熱變得十分難以管理,并且會增加封裝和冷卻成本。
 
用集成驅(qū)動器優(yōu)化氮化鎵性能
圖5. 使用10nH柵極環(huán)路電感和下拉電阻時的仿真結果:Rpd = 1Ω(紅色)、2Ω(綠色)和3Ω(藍色)。E_HS是高管能耗。
 
為了減輕直通電壓,可以將柵極偏置為更大的負電壓,不過這樣做會增加柵極上的應力,并且會在器件處于第三象限時增大死區(qū)時間損耗。因此,在柵極環(huán)路電感比較高時,柵極應力與器件關斷保持能力之間的均衡和取舍很難管理。你必須增加柵極應力,或者允許半橋直通,這會增加交叉?zhèn)鲗p耗和電流環(huán)路振鈴,并且會導致安全工作區(qū) (SOA) 問題。一個集成式GaN/驅(qū)動器封裝提供低柵極環(huán)路電感,并且最大限度地降低柵極應力和直通風險。
 
GaN器件保護
 
將驅(qū)動器與GaN晶體管安裝在同一個引線框架內(nèi)可以確保它們的溫度比較接近,這是因為引線框架的導熱性能極佳。熱感測和過熱保護可以置于驅(qū)動器內(nèi)部,使得當感測到的溫度超過保護限值時,GaN FET將關閉。
 
一個串聯(lián)MOSFET或一個并聯(lián)GaN感測FET可以被用來執(zhí)行過流保護。它們都需要GaN器件與其驅(qū)動器之間具有低電感連接。由于GaN通常以較大的di/dt進行極快的開關,互聯(lián)線路中的額外電感會導致振鈴,并且需要較長的消隱時間來防止電流保護失效。集成驅(qū)動器確保了感測電路與GaN FET之間盡可能少的電感連接,這樣的話,電流保護電路可以盡可能快的做出反應,以保護器件不受過流應力的影響。
 
用集成驅(qū)動器優(yōu)化氮化鎵性能
圖6. 一個半橋降壓轉(zhuǎn)換器(通道2)中的高管接通時的SW節(jié)點波形。
 
開關波形
 
圖6是一個半橋的開關波形;
 
這個半橋包含2個集成式驅(qū)動器的GaN器件,采用8mm x 8mm四方扁平無引線 (QFN) 封裝。通道2顯示SW節(jié)點,此時高管器件在總線電壓為480V的情況下,以120V/ns的壓擺率被硬開關。這個經(jīng)優(yōu)化的驅(qū)動器集成式封裝和PCB將過沖限制在50V以下。需要說明的一點是,捕捉波形時使用的是1GHz示波器和探頭。
 
結論
 
GaN晶體管與其驅(qū)動器的封裝集成消除了共源電感,從而實現(xiàn)了高電流壓擺率。它還減少了柵極環(huán)路電感,以盡可能地降低關閉過程中的柵極應力,并且提升器件的關斷保持能力。集成也使得設計人員能夠為GaN FET搭建高效的過熱和電流保護電路。
 
 
免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯(lián)系小編進行處理。
 
推薦閱讀:
 
以數(shù)字方式選擇參考電壓
直流/直流轉(zhuǎn)換器數(shù)據(jù)表——系統(tǒng)效率揭秘
在輕度混合動力汽車中利用功率模塊和寬禁帶實現(xiàn)雙電池管理
什么是相位,我們?yōu)楹我P心相位?
貿(mào)澤2020年新增70多家制造商合作伙伴,進一步擴充產(chǎn)品分銷擴容
要采購開關么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
共模電感 固態(tài)盤 固體繼電器 光傳感器 光電池 光電傳感器 光電二極管 光電開關 光電模塊 光電耦合器 光電器件 光電顯示 光繼電器 光控可控硅 光敏電阻 光敏器件 光敏三極管 光收發(fā)器 光通訊器件 光纖連接器 軌道交通 國防航空 過流保護器 過熱保護 過壓保護 焊接設備 焊錫焊膏 恒溫振蕩器 恒壓變壓器 恒壓穩(wěn)壓器
?

關閉

?

關閉